
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

454 | P a g e

www.ijacsa.thesai.org

Web Service for Incremental and Automatic Data

Warehouses Fragmentation

Ettaoufik Abdelaziz

RITM Lab., ESTC, CED Engineering Sciences

ENSEM, Hassan II University

Casablanca, Morocco

Mohammed Ouzzif

RITM Lab., ESTC

Hassan II University

Casablanca, Morocco

Abstract—The data warehouses (DW) are proposed to

collect and store heterogeneous and bulky data. They represent a

collection of thematic, integrated, non-volatile and histories data.

They are fed from different data sources through transactional

queries and offer analytical data through decisional queries.

Generally, the decisional queries execution cost on large tables is

very high. Reducing this cost becomes essential to enable

decision-makers to interact in a reasonable time. In this context,

DW administrators use different optimization techniques such as

fragmentation, indexing, materialized views, and parallelism. On

the other hand, the volume of data residing in the DW is

constantly evolving. This can increase the complexity of frequent

queries, which can degrade the performance of DW. The

administrator always has to manually design a new

fragmentation scheme from the new load of frequent queries.

Having an automatic fragmentation tool of DW becomes

important. The approach proposed in this paper aims at an

incremental horizontal fragmentation technique of the DW

through a web service. This technique is based on the updating of

the queries load by adding the new frequent queries and

eliminating the queries which do not remain frequent. The goal is

to automate the implementation of the incremental

fragmentation in order to optimize the new queries load. An

experimental study on a real DW is carried out and comparative

tests show the satisfaction of our approach.

Keywords—Data warehouse; horizontal fragmentation;

incremental fragmentation; frequent queries; web service

I. INTRODUCTION

Business intelligence is a sector in full development. It is a
management term that refers to the means, tools and methods
that support the process of collecting, consolidating, modeling,
analyzing and restoring information [1]. To store
heterogeneous and voluminous data, data warehouse (DW)
has been proposed [2]-[4]. It is very promising technology and
is being accepted rapidly across all domains of the industries
[1]-[5]. DW is an essential component of almost every modern
enterprise information system [6]. It provides a new and wide
idea of the company and gives better performance of database
[7]. It can be defined as a model of a concrete business system
representing a set of all of the states of that system during a
given interval of time [8]. It is represented by
multidimensional cubes supporting a large volume of data that
can reach several thousand gigabytes (terabyte). Each
dimension of the cube represents an axis of analysis and each
element of the cube represents the fact analyzed. The DW is
modeled according to one of the three models, star schema,

snowflake schema and constellation schema. In the star
modeling case, the measurements are represented by a fact
table and each measurement dimension represented by a
dimension table [9]. The fact table contains attributes
representing quantitative data named measurements and
foreign keys referencing the dimension tables, whereas the
dimension table contains attributes representing qualitative
data that can be used as the analysis axis.

The DW are often questioned by complex decisional
queries. These queries invoke a very large fact table and
include joins between the fact table and several dimension
tables. In order to reduce the cost of this queries kind, the DW
Administrator uses different optimization techniques.
Horizontal fragmentation (HF) is one of the most used
techniques; it consists of partitioning a dataset of DW to
several disjoint partitions. This partitioning is madding from
an attributes list and selection predicates extracted from the
query load noting that the number of fragmentation sub-
schemes of fact table can be very large. It is given by

N=∏ 𝑚𝑖
𝑔
𝑖=1 where, mi represents the number of fragments of

dimension table and g represents the number of dimension
tables participating in fragmentation process [10]. To avoid the
explosion of this number, the problem of HF schema selection
is handled under the maximum number of fragments
constraint required by the administrator. The selection of a
DW HF schema has been proven to be NP-complete problem
[11]-[15]; there is not an exact solution to this kind of
problem. For this purpose, several works have treated the HF
schema selection problem using different algorithms and
different methods in order to select a schema close to the most
optimal schema. Gacem, et al. in [14] grouped these works
into four categories: 1) predicate-guided works; 2) affinity-
guided works; 3) cost-guided works; and 4) classification-
guided works.

During the analysis of different works, we found that
several works propose the HF schema selection approaches
based on a static selection carried out manually by the DW‟s
administrator. Few studies propose a static selection using the
DW‟s administration tools [10]-[16]. In [17] the authors
propose an approach for selecting an incremental HF scheme.
This approach is based on the manual adaptation of the current
HF schema to the new frequent queries. But it does not take
into account the queries participating in the selection process
of the current schema and which do not remain frequent. In
this paper, we propose an approach for selecting an automatic
and incremental HF schema using a web service. It is based on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

455 | P a g e

www.ijacsa.thesai.org

the adaptation of the current HF schema to changes appeared
in the frequent queries load.

In Section 2 we give a brief overview of related work on
the static selection problem of a HF schema and on the
interaction between DW and web service. Then we present our
approach of automatic and incremental selection of a HF
schema in Section 3. Section 4 presents our experimental
study on a physical DW. And we will conclude with a
conclusion and perspectives.

II. SELECTION OF OPTIMIZATION TECHNIQUES

We want to offer a lightweight but powerful and online
data warehouse performance optimization tool. The DW
performance is considered the main concern for designers [9].
This performance is based on optimization of the queries
execution time. The fragmentation, indexing and materialized
views are a set of techniques used to improve the queries
execution cost. The fragmentation is used in case of very huge
fact and dimension tables, both of these tables can be
physically partitioned. Whereas materialized views store
aggregated data to yield faster access of data and reduced
query response time [4]. It is a redundant structure that
duplicates data in DW and occupies a supplement memory
space. The space constraint forces to select an optimal subset
of materialized views to attain the balance between query cost
and space limits [4]. The indexing belongs also to the
redundant structure; it represents data structures allowing
direct and rapid access to the tuples of a voluminous relation.
It optimizes queries by minimizing the amount of data to be
used in calculations. Optimizing queries execution time
consists in selecting and implementing one or several
optimization techniques. This selection can be isolated,
sequential or combined. The first case consists in
implementing one optimization technique at a time. Whereas
the second case consists of implementing two or more
techniques sequentially and third case joint selection of two or
more optimization techniques by exploiting the dependencies
between them.

A. Selection of a HF schema

The selection of an HF schema consists in partitioning the
DW schema into several disjoint sub-schemas in order to
optimize the queries load executed on DW. The combination
of these sub-schemas produces the full source data without
loss or addition of information. There are three types of
fragmentation [11]:

1) Horizontal fragmentation (HF) consists of partitioning

a table following a selection predicate.

2) Vertical fragmentation (VH) allows partitioning a table

according to a projection query.

3) Mixed fragmentation (MF) allows partitioning a table

by combining HF and VF.
In data warehouses field, we talk about the primary

horizontal fragmentation (PHF) and derived horizontal
fragmentation (DHF). The PHF consists on partitioning the
dimension tables whereas the DHF consists on partitioning the
fact table according to the fragmentation schema of dimension
tables.

Typically, DW‟s administrators use different optimization
algorithms to select an optimal schema. Thus, the
administrator always has to determine the frequent queries
load. The selection of an optimal schema of HF can be static
or incremental.

1) Static selection
The process of static selection has following parameters in

entrance:

 A data warehouse schema

 A set of frequent queries

 A constraint W describes the maximum number of
fragments.

The static selection of HF schema consists of selecting a
set of tables to fragment and determinate the sub-partitions for
each table selected in order to minimize the total queries
execution cost under the maximum number of fragments. The
static selection of HF schema remains less efficient since it
does not adapt to the queries load evolution. In this case, the
process of static selection mast be triggered and a new HF
schema should be generated.

Several research studies deal with the queries optimization
problem [2]-[6], [12]-[15], [18]-[22]. We will introduce below
some works dealing with static selection of fragmentation
schema and will also present some algorithms used in this
context. We will focus on the HF of DW.

In [15], the authors treat the HF of DW using a method
based on the algorithm of ant colonies. They proposed a cost
based approach. This approach differs from existing
approaches since it does not start with the direct application of
an HF schema selecting algorithm, but it adds a new brick to
map the HF selection problem. Then they solve the mapped
problem by exploiting all the research conducted to solve this
problem kind. On the other hand, the authors propose in [18]
an XML data warehouses performance optimization technique
by fragmentation and distribution on a grid. To do this, they
used a method to adapt the most widely used fragmentation
techniques in the relational domain to XML DW. The final
fragmentation schema is generated by an original
fragmentation method based on the k-means classification
technique to control the number of fragments. Finally, they
proposed a distribution approach of a XML data warehouse on
a grid whereas in [14], the authors propose a scalable
approach based on classification and election for a
fragmentation supporting bulky loads. To this effect, they
proposed a method for reducing the input queries load in order
to minimize the selection problem complexity and the queries
execution time. The proposed approach is based on two
principles steps: 1) the queries classification to reduce the load
size; and 2) the election to produce a new load that substitutes
the initial load. This new load will be used as a main load to
split the DW. From their part, the authors in [12] are interested
to implementing a DW horizontal fragmentation approach.
This approach represents the following characteristics: 1) cost
model based approach; 2) it allows control of the generated
number of fragments; and 3) DW fragmentation is performed
from a maximum number of fragments set by the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

456 | P a g e

www.ijacsa.thesai.org

administrator according to the following scenario: PHF of the
dimension tables according to which the DHF from the fact
table is performed. The authors have demonstrated that this
scenario is most appropriate for data warehouses, as it
improves selections operations on dimension tables and the
joint operations between facts and dimensions whereas in
[19], the authors propose a method based on a classification
algorithm to reduce the number of predicates in the data
warehouses before fragmentation. The proposed method
encompasses four phases: 1) a preliminary phase for
determinate the set of predicates selection; 2) a coding phase
for coding the predicates as binary matrices; 3) a classification
phase of these predicates using the k-means algorithm; and a
final phase 4) to reduce the number of predicates. All works
that we have cited in this section are based on static selection
of HF schema. They do not evolve as the query load changes.

2) Incremental selection
The works deal with the selection of HF schema which is

based on static selection. This selected schema does not
remain validate when a new frequent costly query coming
integrated the frequent queries load. The incremental selection
of an HF schema represents a solution of static selection
limits. The process of incremental selection has following
parameters in entrance:

 The current HF schema.

 A set of frequent queries.

 A set of new frequent queries.

 A set of queries that does not remain frequent.

 A constraint W describes the maximum number of
fragments.

The incremental selection of HF schema consists on
adapting the current HF schema to new frequent queries load.
This adaptation is realized by execution of splitting operation
when new frequent query coming integrates the frequent
queries load, or by merging when an old frequent query does
not remain frequent.

Very little works have dialed with dynamic and an
incremental optimization of DW performance [17]-[23]. In
[17], the authors have opted for the incremental selection of a
fragmentation schema. They have presented an incremental
HF approach. This approach is based on splitting of partitions
in order to adapt the current fragmentation schema with the
newly queries load. The authors have proved that this
approach is very important than the selection of new
fragmentation schema because this last requires the merging
of all fragments followed by several splitting operations.

B. Methods of implementation

After selection of one or several optimization techniques,
an implementation of the generated schema represents the next
step. This implementation can be carried out manually by
DW‟s administrators or automatically by DW administration
tools and tuning tools.

1) Manual Implementation
In order to implement the selected DW fragmentation the

administrator must seizes the necessary scripts then execute
them in DW. These scripts are represented by scripts of
fragmentation and scripts for rewriting queries. This task is
difficult and requires an expertise of the administrator and an
additional time.

In the most works that we have quoted, the administrators
implement manually the selected schemas. This
implementation is realized in the following steps:

 Generating HF schema by using one or several
optimization algorithms or using other method.

 Seizing the scripts of fragmentation.

 Seizing the scripts of rewriting queries.

 Executing the some scripts in DW.

2) Automatic implementation
The automatic implementation of selected HF schema

represents an approach to reducing the manual efforts and to
minimizing the implementation time.

Very little works propose an automatic fragmentation
approach. In [24], the authors propose a method based on
exploitation of recent statistical data access for dynamic
fragmentation in DW. This fragmentation is represented by the
automatic selection and automatic implementation of selected
schema whereas in [17], the authors propose the ParAdmin
tool of administration and tuning of DW. Among other things,
this tool assists the administrator in HF task and indexing task.
To do this, it implements various algorithms for selecting an
HF schema and different algorithms for selecting a binary join
index (BJI) configuration. Similarly, the proposed tool
supports isolated selection of HF technique, and multiple
selections of HF and BJI. On their part, in [16] the authors
present a tool named AdminFIC. This tool allows a combined
selection of a fragmentation schema and BJI based on
selection attributes classification. The selection of each
technique is carried out by the genetic algorithm guided by a
cost model.

The two proposed tools allow implementing a new HF
schema. Even if this implementation will improve the DW
performance, it is very expensive from the implementation
view point on an already fragmented DW. The fragmentation
of this latter requires several mergers of old partitions
followed by several partitioning operations.

C. Data warehouses and web services

A web service can be represented by set of features
exposed on internet or on intranet, either by applications or for
applications in real time and without human intervention.
Previous works have treated the combine between DW and
web services. In [25], the authors presented a new distribution
of DW called data web house (DWH). This pattern of DW
distribution is based on Web service. For their part, the authors
in [26] proposed an architecture of DW oriented web service.
This architecture is based on construction of mini-cubic
SOLAP for mobile customer whereas in [27], the authors has
presented a prototype named Data warehouse fed with Web
Services (DaWeS), and they have explored how ETL using the
mediation approach benefits this trade-off for enterprises with

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

457 | P a g e

www.ijacsa.thesai.org

complex data warehousing requirements. The pricipal gol of
this approach is to reduce the manual effort. For their part the
authors in [28], discussed the combinaison between web
service and DW. This discution is based on opportunities for
using DW at real-time through a web service in terms of data
modeling, acquisition and analysis, analyses and designs the
real-time data warehouse architecture.

In our approach, we use a web service for monitoring and
improving automatically the DW performance and reduce both
the manual efforts and the implementation cost.

III. PROPOSED APPROACH

In order to control and improve DW performance we
present a new approach based on automatic and incremental
fragmentation using a web service. However, the web service
selects and implements an HF schema, and then it monitors
the DW performance to avoid any degradation kind. This
approach offers a remote administration and an automatic
implementation of an HF schema. The web service allows the
administrator to:

 View the DW state.

 View the frequent queries load.

 Be aware of new queries that integrate the load of
frequent queries and queries that remain more frequent.

 Set the used optimization algorithm (the genetic
algorithm in our case).

 Set the value of maximum number of fragments (W).

 Set the value of storage space reserved for redundant
structures (indexes and materialized views).

We define our approach of automatic and incremental HF
by taking inspiration from the works of Bouchakri, et al. [10]
who presented a manual incremental HF approach and did not
deal with the case of queries that are no longer frequents.

Fig. 1. General description of proposed approach.

Our approach follows the process of Fig. 1: First, the set of
new queries are detected then the new frequent queries (NFQ)
are determined. The NFQ determines a new fragmentation
attributes or adds new domain extensions to the old attributes.

A. Queries treatment

The web service uses a module for queries management.
This module is responsible for processing all requests
querying the DW. This treatment takes place in the following
steps:

 Establish the frequent queries list.

 Compare the new list with the frequent queries list
saved.

 Determine the list of NFQ.

 Determine the queries list that is no longer frequents.

 For each NFQ, determine the fragmentation attributes
list and the selection predicates list.

1) Establish the frequent queries list: In order to retrieve

the queries list that is querying it, Oracle stores all queries

information in a view named: V$SQLAREA. The execution

of a projection on this view makes it possible to construct a

most frequent queries list that interrogates the DW. Fig. 2

presents an example of projection result on the V$SQLAREA

view:

SELECT sql_text, sql_id, executions, first_load_time

FROM V$SQLAREA

ORDER BY executions DESC;
The execution of this query returns the result illustrated in

Fig. 2.

Fig. 2. Example of most frequent queries list.

The “SQL_TEXT” field represents the query body, the
“SQL_ID” field represents the query identifier, the
“EXECUTIONS” field represents the executions count of
query, and the “FIRST_LOAD_TIME” field represents the
hour of query first execution. This last allow us to build the
frequent queries list from a given date.

2) Compare the new list with the frequent queries list

saved: The web service uses a table dedicated to saving the

information of the frequent queries load. This information will

be used later to update the queries load by comparing this

queries list to the current list of frequent queries. In our

approach, two queries are considered identical if they use the

same selection attributes with the same predicates.
Consider the following three queries Q1, Q2 and Q3:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

458 | P a g e

www.ijacsa.thesai.org

Request Q1
SELECT MAX(Prix)
FROM Product P, Purchase A, Suppliers S

WHERE P.IdP = A.IdP AND P.IdF = S.IdF

 AND P.NomProduct ='P5'
 AND F.Ville = 'Casablanca';

Request Q2
SELECT MAX(Prix)
FROM Product P, Purchase A, Suppliers S

WHERE P.IdP = A.IdP AND P.IdF = S.IdF

 AND P.NomProduit ='P4'
 AND F.Ville = 'Rabat';

Request Q3
SELECT AVG(Prix)

FROM Product P, Purchase A, Suppliers S
WHERE P.IdP = A.IdP AND P.IdF = S.IdF

 AND P.NomProduit='P5'

 AND F.Ville = 'Casablanca';

The two queries Q1 and Q3 use the same selection
attributes with the same predicates. They are considered
identical even if the two queries use two different aggregation
functions. On the other hand, the query Q2 uses other
selection predicates; it is different from the two queries Q1
and Q3. The Table 1 shows an example of saving data for the
three queries Q1, Q2, and Q3.

TABLE. I. QUERIES DATA SAVING TABLE

Request Attribute predicate

Q1 NomProduit P5

Q1 Ville Casablanca

Q2 NomProduit P4

Q2 Ville Rabat

Q3 NomProduit P5

Q3 Ville Casablanca

Q3 Ville Casablanca

From Table 1 data, the web service generates the domain
of each selection attribute. AN example of attributes domains
presentation is illustrated in Table 2.

TABLE. II. ATTRIBUTES DOMAINS

Ville NomProduit

Casablanca P4

Rabat P5

When the web service detects a NFQ, it updates the
queries information table. This update allows adding a new
selection attributes or define a new extension of the old
attributes in order to trigger the optimization task.

3) Determine the list of NFQ: An NFQ is a detected

request and does not belong to the current list of frequent

queries. An NFQ determines either new selection attributes or

domain extensions of the old attributes.

4) Determine the queries list that are no longer frequents:

A query that does not remain frequent is a query belonging to

the old load of frequent queries. For this purpose, this query

must be present in the query table filled in by the web service

since it participated in the selection process of the

fragmentation current schema. On the other hand, this query

will not be selected from the frequent queries determined from

the V$SQLAREA view.

5) For each NFR, determine the fragmentation attributes

list and the selection predicates list: Each query is processed

as a character string. Any selection attribute “AtS” of any

NFQ must be presented in one of the following forms:

“WHERE AtS”, “HAVING AtS”, “AND AtS”, and “OR

AtS”. The selection attributes and the join attributes are

distinguished by the fact that the join attributes are compared

to other join attributes, while the selection attributes are

compared by values. These values represent the selection

predicates. The selection criterion is written as follows: “AtS

opr PrS”, where AtS represents a selection attribute, “PrS”

represents a selection predicate and “opr” designates one of

the following comparison operators {=, <,>, <>, ≤, ≥,IN, NOT

IN}.
Consider the following query Q4:

Request Q4
SELECT AVG(Prix)
FROM Product P, Purchase A, Fournisseurs F

WHERE P.IdP = A.IdP AND P.IdF = A.IdF

 AND P.NomProduit ='P5'

 AND (F.Ville = 'Casablanca' OR F.Ville='Rabat');

From the query Q4, the module extracts the attributes list
{NomProduit, Ville} and the selection predicates list {P5,
Casablanca, Rabat}.

In order to consider the NFQ in the DW optimization
process, two optimization methods can be defined:
1) implementation of a new fragmentation schema; and 2) the
fragmentation current schema adaptation.

B. Implementation of a new fragmentation scheme (INFS)

Several research works treat the implementation of a new
HF schema through the use of different optimization
algorithms. The major problem encountered is that the INFS
does not take into account the fragmentation previous scheme.

The INFS improves the DW performance, but it is very
expensive from the implementation view point on an already
fragmented DW. It requires several merge operations of the
old partitions for reconstruct the no fragmented DW. Then use
several partitioning operations for implement the new
fragmentation schema.

C. Adaptation of current schema of fragmentation

In order to take into account the execution of a NFQ, an
adaptation of the fragmentation current schema must be
performed. This adaptation can be achieved by bursting of the
DW fragments in the appearance case of the new attributes or
the new selection predicates, and by fusions in the
disappearance case of the former attributes or the
fragmentation predicates. Under Oracle, is used the SPLIT
PARTITION function to split a fragment into two, and the
MERGE PARTITION function to combine two fragments.

The SPLIT function increases the number of fragments,
whereas the MERGE function decreases the number of
fragments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

459 | P a g e

www.ijacsa.thesai.org

The adaptation of the fragmentation schema can be
implemented in four different ways:

1) Splitting fragments
Consider a DW containing a facts table named Purchase

and a dimension table named Product. The Product table data
before and after fragmentation is shown in Fig. 3. The
Products table is partitioned according to the model shown in
Fig. 4.

Fig. 3. Product table before and after fragmentation.

Fig. 4. Fragmentation schema of Product table.

Consider the following query Q5:

Request Q5
SELECT AVG(Prix)

FROM Purchase A, Product P
WHERE A.Idp = P.IdP

 AND P.Categorie = 'C3'

The query Q1 is an NFQ, the response time optimization
of this query leads to the application of the fragmentation
schema illustrated in Fig. 5. The adaptation of the current
fragmentation scheme must be carried out by the application
of the function SPLIT on the third fragment of the Product
table (Product3) and will produce a new fragment. The result
of this adaptation is presented in Fig. 6.

Fig. 5. New fragmentation schema.

Fig. 6. Products table fragmented according to the new fragmentation

scheme after application of the SPLIT function.

2) Splitting followed by fusion
If the number of fragments generated exceeds the

maximum number of fragments (W), and if the web service
does not detect other requests that do not remain frequent, it
proceeds to classify the selection attributes according to their
use frequencies by the queries. Then, it merges the sub-
domains the months used until obtaining an HF schema that
respects the W constraint. The following code represents the
algorithm used to adapt the HF schema to the new frequent
queries load.

Algorithm1: Splitting followed by fusion algorithm

input :
 Q : NFQ (New Frequent Query)

 FQL : Frequent Queries Load
 A: Set of fragmentation attributes

 P : Set of fragmentation predicates

 W : maximum number of fragments

output :
 Adapted fragmentation scheme

Begin
 Extract = { Predicates_Extract(Q)}

 For each predicate Pi in Extract Do
 Split = {add new fragments}

 End For

 FQL = FQL + Q // updating the queries load
Calculate(FN) // Fragments number

 If FN>W Then

 Sort = {Scheduling of sub-domains}

 Do
 Merge = { Grouping of fragments }

 Until FN<=W

 End If

End

3) Merging fragments
Consider the DW shown in Fig. 3 which is fragmented

according to the fragmentation schema shown in Fig. 4.
Assume that the Q6 query that participated in the
fragmentation process, no longer frequent, and also the other
frequent queries using the same selection predicates do not
exist.

Request Q6
SELECT AVG(Prix)

FROM Purchase A, Product P
WHERE A.Idp = P.IdP

 AND P.Categorie = 'C2'

 Catégorie C1 C2 C3 C4

Catégorie 1 2 3 3

 Catégorie C1 C2 C3 C4

Catégorie 1 2 3 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

460 | P a g e

www.ijacsa.thesai.org

The fragment dedicated to the selection predicate “C2” is
no longer useful and can deteriorate the response time of other
requests. The grouping of this fragment with other fragments
reduces the number of fragments loaded when executing the
most frequent queries, which reduces the joins number to be
performed for respond to queries. For example, if a request
queries the DW with the clause “WHERE P.Categorie<>
„C1‟ ”. The response to this query requires access to two
fragments (Product2 and Product3) instead of a single
fragment, which consumes extra time.

The response time optimization of other requests leads to
the implementation of the HF schema illustrated in Fig. 7. The
adaptation of the fragmentation current schema must be
carried out by applying the MERGE function to group the two
fragments (Product2 and Product3). The result of this
adaptation is presented in Fig. 8.

Fig. 7. New fragmentation schema for merging.

Fig. 8. Product table fragmented according the new fragmentation schema

after application of MERGE function.

4) Fusion followed by splitting
Executing the fragment merging operation reduces the

number of fragments. In this case, the web service triggers the
optimization process of the other frequent queries. This
process begins with the scheduling of the sub-domains which
are constituted by several selection predicates. This
classification is carried out following the use of frequency of
the sub-domains by the queries. Then, it proceeds to the
bursting the most used sub-domains until obtaining a new
fragmentation schema. This new schema increases the number
of fragments that does not exceed the W value.

The following code illustrates the algorithm used to adapt
the HF schema to the new load of frequent queries:

Algorithm 2 : Fusion followed by splitting algorithm

Input :

 NFQ : Non Frequent Query

 FQL : Frequent Queries Load
 A: Set of fragmentation attributes

 P : Set of fragmentation predicates

W : maximum number of fragments
Output :

 Adapted fragmentation scheme

Begin

 Q = FQL – NFQ

Extract = { Predicates_ Extract(NFQ)}

 For each predicate Pi in Extract DO

 For each Qi in Q DO

 If Qi does not use Pi Then

 Merge = { Grouping fragments of predicate Pi}

 End If

 End For

 End For

 FQL = Q // updating the frequent queries load

Calculate (FN) //fragments number

 If FN<W Then
 Sort = { Scheduling of sub-domains}

 DO

 Split = {add new fragments}
 Until FN=W

 End If

End

IV. TESTS AND RESULTS

We performed tests on APB1 benchmark generated under
Oracle 11g. We use an already fragmented DW (static
fragmentation) according to an HF schema generated from
load of ten queries presented in Table 3.

In first step, we fixed the maximum number of fragments
(W) to 10 then we started by executing new queries set
illustrated in Table 4. First, we executed query Q11 several
times. The web service detects the presence of an NFQ and
triggers the selecting process of optimization. We have
successively executed the new queries set presented in Table
4. Then we retrieved the execution cost of each request in
different cases: static fragmentation, implementation of a new
HF schema and adaptation of the current schema. In second
step we varied the maximum number of fragments (W) and we
executed simultaneously a set of new queries illustrate in
Table 4 then we retrieved the execution cost in the three cases.

To calculate the queries execution cost, we used the
method EXPLAIN PLAN offered by the Oracle optimizer.

TABLE. III. FREQUENT QUERIES LOAD LIST

Request Attribute

Q1 class_level

Q2 family_level

Q3 line_level 3

Q4 division_level

Q5 year_LEVEL

Q6 class_LEVEL, retailer_level

Q7 year_LEVEL, class_level

Q8 month_level, retailer_level

Q9
year_level, retailer_level,

line_level

Q10
month_level, division_level,
all_level

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

461 | P a g e

www.ijacsa.thesai.org

TABLE. IV. NEW FREQUENT QUERIES LIST

Request Attribute

Q11 group_level

Q12
year_level, month_level,
class_level, group_level

Q13
month_level, group_level,

retailer_level, all_level

Q14 month_level, division_level

Q15 customer_level

A. Queries execution cost

1) Variation of Query

Fig. 9. Execution cost of new queries.

Fig. 10. Reduction rate of new queries execution cost.

Fig. 9 shows the execution time of new frequent queries in
three cases: 1) static fragmentation; 2) implementation of new
fragmentation schema; and 3) adaptation of the current
fragmentation schema whereas Fig. 10 shows the reduction
rate of the execution cost of new frequent queries.

We notice that the adaptation of the current schema and the
INFS have the best cost compared to the static fragmentation.
This is caused by the fact that the INFS generates a new
optimal schema optimizing the total execution cost of the
queries load. Thus the adaptation of the current schema
generates, generally, a fragment for each frequent request.
This results show the incremental fragmentation impact on
DW performance.

2) Variation of W

Fig. 11. Execution cost by varying W.

In order to see the influence of the W constraint on the

optimization in the incremental fragmentation case, we have
varied it and for each value we have executed both the list of
new frequent queries illustrated in Table 4. We have noted the
execution cost. The results illustrated in Fig. 11 show that the
best cost is obtained by the approach of adapting the current
fragmentation scheme. This is demonstrated by the fact that
when executing a list of new frequent queries, the INFS
approach generates a fragmentation scheme optimizing the
cost of the whole load of frequent queries whereas the
approach of current schema adaptation optimizes the total cost
of the list of frequent new queries by generating new
fragments under the maximum number of fragments
constraint.

B. Incremental fragmentation implementation time

In second test, we recovered the incremental fragmentation
implementation time through the web service. We compared
the implementation time of a new HF scheme with the
adaptation time of the current schema. For this purpose we
have executed the new queries successively several times. In
the other hand, we recovered the incremental fragmentation
implementation time through the web service for different
values of W. We compared the implementation time of a new
HF schema with the adaptation time of the current schema.
For this purpose we have executed the simultaneously a set of
new frequent queries several times for each value of W.

The results obtained are summarized in the following
illustrations:

1) Variation of Query

Fig. 12. Implementation cost of an incremental HF schema in the case of new

frequent queries.

Fig. 13. Implementation cost of incremental HF schema in the case of queries

that are no longer frequent.

Fig. 12 shows the implementation cost of incremental HF
schema for different new queries detected by the web service.
Whereas Fig. 13 illustrates the implementation time of the HF
schema in the case of queries which participated in the first
fragmentation process and which do not remain frequent. The
two figures illustrate the implementation time of a new

0

100

200

300

400

500

600

700

11Q 12Q 13Q 14Q 15Q

Ex
ec

u
ti

o
n

 c
o

st
 (

m
s)

New Frequent Queries

Static

fragmentation

Adaptation of

current scheme

Implementation

of new scheme

0

10

20

30

40

50

60

70

11Q 12Q 13Q 14Q 15QC
o

st
 o

p
ti

m
iz

at
io

n
 r

at
e(

%
)

New Frequent Queries

Implementation

of new scheme

Adaptation of

current scheme

0

100

200

300

400

12 14 16 18 20

Ex
e

cu
ti

o
n

 c
o

st
 (

m
s)

Number maximum of fragments

Static

fragmentation

Adaptation of

current schema

Implementation

of new schema

0.00

5.00

10.00

15.00

20.00

25.00

30.00

11Q 12Q 13Q 14Q 15Q

26.30 25.20 25.30 24.60 24.90

0.55 0.59 0.58 0.57 0.65

Im
p

le
m

e
n

ta
ta

io
n

 c
o

st

(m
in

)

New Frequent Queries

Implementation

of new schema

Adaptation of

current schema

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1Q 2Q 3Q 4Q 5Q

25.30 24.20
26.30 25.10 26.00

0.50 0.60 0.55 0.61 0.70

Im
p

le
m

e
n

ta
ti

o
n

 c
o

st

(m
in

)

Non Frequent Queries

Implementation
of new scheme

Adaptation of
current schema

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

462 | P a g e

www.ijacsa.thesai.org

schema and the adaptation time of the current schema. The
results obtained show that the implementation total cost of a
new incremental HF schema is very expensive compared to
the adaptation total cost of the current HF schema. This is
proved by the fact that the INFS requires several merge
operations of the old partitions for reconstruct the no
fragmented DW. Then trigger an optimization algorithm or
other method for generating a new optimal schema. And
finally, execute several partitioning operations for
implementing the new fragmentation schema in DW. The
INFS cannot benefit from the old fragmentation schema. But,
the adaptation of the current schema requires just the
execution of some operations of partitioning, fusion or both.
These operations are not very expensive.

2) Variation of W

Fig. 14. Implementation cost of incremental HF schema for different values

of W.

3) Variation of Number of New Frequent Queries

Fig. 15. Implementation cost of incremental HF schema for different number

of new frequent queries.

Fig. 14 shows the implementation cost of incremental HF
schema by the web service for different values of W, and Fig.
15 shows the implementation cost of incremental HF schema
by the web service for different number of new frequent
queries.

It is noted that the implementation cost of adaptation of the
current schema does not vary much when we change the
maximum number of fragments or the number of new frequent
queries executed simultaneously. But the cost of implementing
a new schema is very high compared to the cost of adapting
the current schema. The cost of implementing a new schema
can be written as follows: CTimp = Csel + Cimp.

4) Csel : Represents the cost of selecting the new schema,

it depends on the optimization algorithm and/or any other

method used to select a schema close to the optimal schema.

This selection generally requires a high cost compared to the

implementation cost.

5) Cimp: Represents the implementation cost of the

selected schema, it is the time needed to run the partitioning

and/or merge scripts in the adaptation of the current schema

case, and the time needed to execute the partitioning script in

the INFS case.
In the adaptation approach, the Csel is null because in this

case the current schema is always validate. Thus, the web
service product other fragments optimizing the new frequents
queries. But in the INFS approach, the web service does not
takes in the account the current schema, it proceeds by
merging all fragments then splitting them until generating the
schema already selected.

V. CONCLUSION

The goal of this work is to improve the DW performance.
However, the proposed approach is based on incremental
selection and automatic implementation of HF schema using a
web service. Two incremental selection scenarios were
proposed: 1) selection of a new HF schema; and 2) adaptation
of the current schema to evolution of the frequent queries
load. Both scenarios optimize queries execution cost. The
implementation of the selected schema is completed
automatically by the web service. The implementation cost of
the selected schema according to second scenario is very low,
which favors this scenario. Our approach differs from existing
approaches since it makes it possible to monitor and improve
automatically the DW performance. In the other works, the
DW‟s administrators, generally, have to implement
fragmentation manually, which requires a lot of time and an
expertise. Very few works offer locally installed
administration tools. On the other hand, although our approach
allows improving the DW performance in reasonable time, it
increases the availability of the latter since it will be
manageable through the web.

We plan to study the possibility to automate the
optimization of a varied queries load by combining
fragmentation with other optimization techniques.

REFERENCES

[1] P. Muley, Exploring the Scope of Data Warehouse and Business
Intelligence Applications in Indian Higher Education Sector, IOSR
Journal of Business and Management (IOSR-JBM) e-ISSN: 2278-487X,
p-ISSN: 2319-7668. Volume 18, Issue 7 .Ver. I, PP 59-63, July 2016.

[2] M. K. Sohrabi*, V. Ghods, Materialized View Selection for a Data
Warehouse Using Frequent Itemset Mining, Journal of Computers,
Volume 11, Number 2, pp 140-148, March 2016.

[3] R. Nath, K. Hose, T. Pedersen, O Romero, A Programmable Semantic
Extract-Transform-Load Framework for Semantic Data Warehouses,
Journal of Information Systems March 3, 2017

[4] A Gosaina, Heena, Materialized Cube Selection using Particle Swarm
Optimization algorithm, 7th International Conference on
Communication, Computing and Virtualization 2016. s. Published by
Elsevier.

[5] M. Shahid, U. Sheikh, B. Raza, M. Shah, A. Kamran, A. Anjum, Q.
Javaid, Application of Data Warehouse in Real Life: State-ofthe-art
Survey from User Preferences’ Perspective, (IJACSA) International
Journal of Advanced Computer Science and Applications, Vol. 7, No. 4,
pp. 415-426, 2016

[6] BiriArun, T.V. V. Kumar, Materialized View Selection using Artificial
Bee Colony Optimization, International Journal of Intelligent
Information Technologies (IJIIT), vol. 13, issue 1, pp. 26-49, 2017

0.00

5.00

10.00

15.00

20.00

25.00

30.00

12 14 16 18 20

24.20 25.00
27.30 26.40 27.10

0.50 0.60 0.55 0.61 0.70

Im
p

le
m

e
n

ta
ti

o
n

 c
o

st

(m
in

)

Maximum number of fragments (W)

Implementation
of new schema

Adaptation of
current schema

0.00

5.00

10.00

15.00

20.00

25.00

30.00

15 20 25 30 40

25.30 26.20 27.10 27.40 26.45

0.55 0.57 0.62 0.67 0.76

Im
p

le
m

e
n

ta
ti

o
n

 c
o

st

(m
in

)

Number of new frequent queries

Implementation
of new schema

Adaptation of
current schema

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

463 | P a g e

www.ijacsa.thesai.org

[7] A. Mateen, L. Chaudhary, Reduce The Wastage of Data During
Movement in Data Warehouse, International Journal of Computer
Applications (0975 – 8887)
Volume 152 – No.8, pp. 20-24, October 2016

[8] I. Bojicic, Z. Marjanovic, Domain/Mapping Model: A Novel Data
Warehouse Data Model, International Journal of Computers,
Communications & Control (IJCCC) ·pp. 166-182, February 2017

[9] E. Sidi, M. El Merouani, E. A. Abdelouarit, Star Schema Advantages on
Data Warehouse: Using Bitmap Index and Partitioned Fact Tables,
International Journal of Computer Applications (0975 – 8887), Volume
134 – No.13, January 2016

[10] K. BOUKHALFA, L. BELLATRECHE, P. RICHARD, Fragmentation
Primaire et Dérivée: Étude de Complexité, Algorithmes de Sélection et
Validation sous ORACLE10g, LISI(Rapport de Recherche, N° 01 -
2008), Mars, 2008.

[11] L. BELLATRECHE, Techniques d'optimisation des requêtes dans les
data warehouses, Sixth International Symposium on Programming and
Systems (PS 2003), 2003, pp. 81-98.

[12] K. BOUKHALFA, L. BELLATRECHE, S. CAFFIAU, De
l‟optimisation de requêtes aux outils d‟administration des entrepôts de
données, RSTI - ISI (Ingénierie des Systèmes d'Information) (ISI 2009),
vol. 13, n. 6/2008 , 2009.

[13] P. Kling, M. T.Ozsu, and D K. audjee, (2010). Distributed xml query
processing: Fragmentation, localization and pruning. Technical report,
University of Waterloo.

[14] A. Gacem, K. Boukhalfa, Nouvelle Approche Scalable Dédiée au
Charges Volumineuses pour la fragmentation des Entrepôts de Données,
Proceedings of Maghreb Conference on Advances in Decision-making
Systems (ASD2013, pp. 61-73, 2013)

[15] M. BARR, L. BELLATRECHE, Approche dirigée par les fourmis pour
la fragmentation horizontale dans les entrepôts de données relationnels,
Revue : Nature & Technologie . n° 06, pp. 16- 24, Janvier 2012.

[16] R. BOUCHAKRI, Une approche dirigée par la classification des
attributs pour fragmenter et indexer des entrepôts de données, Ph.D.
Thesis, Ecole nationale Supérieure d‟Informatique (ESI), Oued Semar,
Alger, 2009.

[17] R. BOUCHAKRI, L. BELLATRECHE, Z. FAGET, Algebra-Based
Approach for Incremental Data Warehouse Partitioning, Proceedings of
the 25th International Conference on Database and Expert Systems
Applications (DEXA 2014, pp. 441-448, 2014).

[18] Mahboubi H., Optimisation de la performance des entrepôts de données
XML par fragmentation et répartition, Ph.D. Thesis, EDIIS, Universite
Lumière Lyon 2, 2009.

[19] M. GHORBEL, K. TEKAYA, A. ABDELLATIF, Reducing the number
of predicates for approaches to distribution of data warehouses, Revue
des sciences et technologies de l'information, Volume 21 n°1 - pp.81-
102, 2016

[20] S. Aissi, M. Gouider, T. Sboui, L. Ben Said, Enhancing spatial data
arehouse exploitation: A SOLAP recommendation approach,
Proceeding of 17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD), 30 May-1 June 2016,
Shanghai, China

[21] S. Gawali1, M. Vaidya, Selection and Maintenance of Materialized
View Using Genetic Algorithm, International Journal Of Engineering
And Computer Science ISSN:2319-7242 Volume 5 Issue 8 pp. 17715-
17717, 2016

[22] V. Bhatnagar, N. Dahiya, M. Singh, Efficient Materialized View
Selection for Multi-Dimensional Data Cube Models, International
Journal of Information Retrieval Research, Volume 6 Issue 3, pp.52-
74 July 2016

[23] M. Hamad, Y. Turky, A Dynamic Warehouse Design Based on
Simulated Annealing Algorithm, Journal of Advanced Computer Science
and Technology Research, Vol.6 No.1, pp1-8, March 2016

[24] H. Derrar, M. Ahmed-Nacer, O. Boussaid, Exploiting data access for
dynamic fragmentation in data warehouse, International Journal of
Intelligent Information and Database Systems 7(1):34 - 52, January 2013

[25] Z. Luo, Z. Kai-song, J Qiong, X. Hong-xia 1,Z. Kai-peng, Application
of the Web Service Technology on the Data Warehouse System, Journal
of Wuhan University of Technology, 2004

[26] E. Dubé, T. Badard, Y. Bédard, A web service oriented architecture for
the delivery of SOLAP mini-cubes to mobile clients, International
Journal of Geomatics and Spatial Analysis, Volume 19/2, pp.211-230,
2009

[27] J. Samuel, Towards a Data Warehouse fed with Web Services,
Proceeding of European Semantic Web Conference ESWC: The
Semantic Web: Trends and Challenges pp 874-884, 2014

[28] L. Jun, H. ChaoJu, Y. HeJin, Application of Web services on the real-
time data warehouse technology, Proceeding of International
Conference on Advances in Energy Engineering (ICAEE), 19-20 June
2010.

